2,301 research outputs found

    Estimación del estado hídrico del viñedo vid a partir del contenido de agua del suelo, condiciones ambientales y desarrollo foliar

    Get PDF
    II Jornadas de Viticultura de la SECH 3-4 de noviembre 201

    Customer preferences versus managerial decision-making in open innovation communities: the case of Starbucks

    Get PDF
    Customers can participate in open innovation communities posting innovation ideas, which in turn can receive comments and votes from the rest of the community, highlighting user preferences. However, the final decision about implementing innovations corresponds to the company. This paper is focused on the customers’ activity in open innovation communities. The aim is to identify the main topics of customers’ interests in order to compare these topics with managerial decision-making. The results obtained reveal first that both votes and comments can be used to predict user preferences; and second, that customers tend to promote those innovations by reporting more comfort and benefits. In contrast, managerial decisions are more focused on the distinctive features associated with the brand imageJunta de Andalucia. Consejería de Economía, Innovación, Ciencia y Empleo P12-SEJ-328Ministerio de Economía y Competitividad ECO2013-43856-

    First trimester elevations of hematocrit, lipid peroxidation and nitrates in women with twin pregnancies who develop preeclampsia

    Full text link
    Twin pregnancies are considered a risk factor for preeclampsia, an obstetric complication with high maternal and infant morbi-mortality. We hypothesize that alterations in maternal hematocrit, plasma lipid peroxidation and nitrates in the first trimester of pregnancy are associated with preeclampsia development in twin pregnancies. Blood samples were extracted from 102 healthy women with twin pregnancies at tenth week of gestation to assess hematological parameters and plasma levels of malondialdehyde and nitrates. Logistic regression model showed an association between red blood cells (OR = 38.8; p-value = 0.009), hematocrit (OR = 1.6; p-value = 0.017), malondialdehyde (OR = 1.5; p-value = 0.002), and nitrates (OR = 1.1; p-value = 0.045) and preeclampsia development. These parameters are potential biomarkers for early preeclampsia detection in twin pregnancies. Future research is needed to assess their value in predictive algorithmsThis work was supported by Multidisciplinary Research Project [CEMU, 2013-10], Universidad Autónoma de Madrid) and collaborative project Universidad Autónoma de Madrid-Khon Kaen University [KKU: 0514.7.I.12-1948

    Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism

    Get PDF
    [EN] Background: Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. Methods: Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-kappa B, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. Results: Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-kappa B, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a beta-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in metastatic cells with low GSH content. Conclusions: Our results describe an interorgan system where stress-related hormones, IL-6, and GSH coordinately regulate metastases growthThis research was supported by grant (SAF2009-07729 and IPT-010000-2010-21) from the Ministerio de Economia y Competitividad (http://www.idi.mineco.gob.es), Spain.Valles, SL.; Benlloch, M.; Rodriguez, ML.; Mena-Mollá, S.; Pellicer, JA.; Asensi-Miralles, MÁ.; Obrador, E.... (2013). Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism. Journal of Translational Medicine. 11:1-14. https://doi.org/10.1186/1479-5876-11-72S11411Meister, A. (1983). Selective modification of glutathione metabolism. Science, 220(4596), 472-477. doi:10.1126/science.6836290Estrela, J. M., Ortega, A., & Obrador, E. (2006). Glutathione in Cancer Biology and Therapy. Critical Reviews in Clinical Laboratory Sciences, 43(2), 143-181. doi:10.1080/10408360500523878Obrador, E., Benlloch, M., Pellicer, J. A., Asensi, M., & Estrela, J. M. (2011). Intertissue Flow of Glutathione (GSH) as a Tumor Growth-promoting Mechanism. Journal of Biological Chemistry, 286(18), 15716-15727. doi:10.1074/jbc.m110.196261Meister, A. (1991). Glutathione deficiency produced by inhibition of its synthesis, and its reversal; Applications in research and therapy. Pharmacology & Therapeutics, 51(2), 155-194. doi:10.1016/0163-7258(91)90076-xHanigan, M. H. (1995). Expression of gamma-glutamyl transpeptidase provides tumor cells with a selective growth advantage at physiologic concentrations of cyst(e)ine. Carcinogenesis, 16(2), 181-185. doi:10.1093/carcin/16.2.181Obrador, E. (2002). γ-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology, 35(1), 74-81. doi:10.1053/jhep.2002.30277Ballatori, N., & Rebbeor, J. (1998). Roles of MRP2 and oatp1 in Hepatocellular Export of Reduced Glutathione. Seminars in Liver Disease, 18(04), 377-387. doi:10.1055/s-2007-1007171Hodge, D. R., Hurt, E. M., & Farrar, W. L. (2005). The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer, 41(16), 2502-2512. doi:10.1016/j.ejca.2005.08.016Barton, B. E. (2005). Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes. Expert Opinion on Therapeutic Targets, 9(4), 737-752. doi:10.1517/14728222.9.4.737Rose-John, S., Waetzig, G. H., Scheller, J., Grötzinger, J., & Seegert, D. (2007). The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opinion on Therapeutic Targets, 11(5), 613-624. doi:10.1517/14728222.11.5.613Ara, T., & DeClerck, Y. A. (2010). Interleukin-6 in bone metastasis and cancer progression. European Journal of Cancer, 46(7), 1223-1231. doi:10.1016/j.ejca.2010.02.026Emmenegger, U., & Kerbel, R. S. (2010). Chemotherapy counteracted. Nature, 468(7324), 637-638. doi:10.1038/468637aWang, Y., Niu, X. L., Qu, Y., Wu, J., Zhu, Y. Q., Sun, W. J., & Li, L. Z. (2010). Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Letters, 295(1), 110-123. doi:10.1016/j.canlet.2010.02.019Sternberg, E. M. (1997). Neural-immune interactions in health and disease. Journal of Clinical Investigation, 100(11), 2641-2647. doi:10.1172/jci119807Reiche, E. M. V., Nunes, S. O. V., & Morimoto, H. K. (2004). Stress, depression, the immune system, and cancer. The Lancet Oncology, 5(10), 617-625. doi:10.1016/s1470-2045(04)01597-9Besedovsky, H. O., Del Rey, A., Klusman, I., Furukawa, H., Monge Arditi, G., & Kabiersch, A. (1991). Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. The Journal of Steroid Biochemistry and Molecular Biology, 40(4-6), 613-618. doi:10.1016/0960-0760(91)90284-cBethin, K. E., Vogt, S. K., & Muglia, L. J. (2000). Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proceedings of the National Academy of Sciences, 97(16), 9317-9322. doi:10.1073/pnas.97.16.9317Herr, I., & Pfitzenmaier, J. (2006). Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. The Lancet Oncology, 7(5), 425-430. doi:10.1016/s1470-2045(06)70694-5Bernabé, D. G., Tamae, A. C., Biasoli, É. R., & Oliveira, S. H. P. (2011). Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain, Behavior, and Immunity, 25(3), 574-583. doi:10.1016/j.bbi.2010.12.012Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., … Sood, A. K. (2006). The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Reviews Cancer, 6(3), 240-248. doi:10.1038/nrc1820Yang, E. V., Kim, S., Donovan, E. L., Chen, M., Gross, A. C., Webster Marketon, J. I., … Glaser, R. (2009). Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: Implications for stress-related enhancement of tumor progression. Brain, Behavior, and Immunity, 23(2), 267-275. doi:10.1016/j.bbi.2008.10.005Carretero, J., Obrador, E., Anasagasti, M. J., Martin, J. J., Vidal-Vanaclocha, F., & Estrela, J. M. (1999). Clinical and Experimental Metastasis, 17(7), 567-574. doi:10.1023/a:1006725226078Lachize, S., Apostolakis, E. M., van der Laan, S., Tijssen, A. M. I., Xu, J., de Kloet, E. R., & Meijer, O. C. (2009). Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proceedings of the National Academy of Sciences, 106(19), 8038-8042. doi:10.1073/pnas.0812062106Veenema, A. H., Reber, S. O., Selch, S., Obermeier, F., & Neumann, I. D. (2008). Early Life Stress Enhances the Vulnerability to Chronic Psychosocial Stress and Experimental Colitis in Adult Mice. Endocrinology, 149(6), 2727-2736. doi:10.1210/en.2007-1469Asensi, M., Sastre, J., Pallardo, F. V., Delaasuncion, J. G., Estrela, J. M., & Vina, J. (1994). A High-Performance Liquid Chromatography Method for Measurement of Oxidized Glutathione in Biological Samples. Analytical Biochemistry, 217(2), 323-328. doi:10.1006/abio.1994.1126Ortega, A. L., Carretero, J., Obrador, E., Gambini, J., Asensi, M., Rodilla, V., & Estrela, J. M. (2003). Tumor Cytotoxicity by Endothelial Cells. Journal of Biological Chemistry, 278(16), 13888-13897. doi:10.1074/jbc.m207140200SAKAKIBARA, H., KOYANAGI, A., SUZUKI, T., SUZUKI, A., LING, L., & SHIMOI, K. (2010). Effects of Animal Care Procedures on Plasma Corticosterone Levels in Group-Housed Mice during the Nocturnal Active Phase. Experimental Animals, 59(5), 637-642. doi:10.1538/expanim.59.637Lucot, J. B., Jackson, N., Bernatova, I., & Morris, M. (2005). Measurement of plasma catecholamines in small samples from mice. Journal of Pharmacological and Toxicological Methods, 52(2), 274-277. doi:10.1016/j.vascn.2004.11.004Dobos, J., Kenessey, I., Tímár, J., & Ladányi, A. (2011). Glucocorticoid Receptor Expression and Antiproliferative Effect of Dexamethasone on Human Melanoma Cells. Pathology & Oncology Research, 17(3), 729-734. doi:10.1007/s12253-011-9377-8Tsuji, M., Kuno, T., Tanaka, C., Ichihashi, M., & Mishima, Y. (1983). Beta-adrenergic receptors of B16 melanoma cell. Archives of Dermatological Research, 275(6), 415-416. doi:10.1007/bf00417345Im, A., & Appleman, L. J. (2010). Mifepristone: pharmacology and clinical impact in reproductive medicine, endocrinology and oncology. Expert Opinion on Pharmacotherapy, 11(3), 481-488. doi:10.1517/14656560903535880Smoak, K. A., & Cidlowski, J. A. (2004). Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development, 125(10-11), 697-706. doi:10.1016/j.mad.2004.06.010Cole, S. W., & Sood, A. K. (2011). Molecular Pathways: Beta-Adrenergic Signaling in Cancer: Figure 1. Clinical Cancer Research, 18(5), 1201-1206. doi:10.1158/1078-0432.ccr-11-0641Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., & Akira, S. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proceedings of the National Academy of Sciences, 90(21), 10193-10197. doi:10.1073/pnas.90.21.10193McEwen, B. S. (2007). Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiological Reviews, 87(3), 873-904. doi:10.1152/physrev.00041.2006Lee, J.-H., Yoo, S. B., Kim, N. Y., Cha, M. J., & Jahng, J. W. (2008). Interleukin-6 and the Hypothalamic-Pituitary-Adrenal Activation in a Tumor Bearing Mouse. International Journal of Neuroscience, 118(3), 355-364. doi:10.1080/00207450701592915Li, Y.-F., He, R.-R., Tsoi, B., Li, X.-D., Li, W.-X., Abe, K., & Kurihara, H. (2012). Anti-Stress Effects of Carnosine on Restraint-Evoked Immunocompromise in Mice through Spleen Lymphocyte Number Maintenance. PLoS ONE, 7(4), e33190. doi:10.1371/journal.pone.0033190Sarabdjitsingh, R. A., Kofink, D., Karst, H., de Kloet, E. R., & Joëls, M. (2012). Stress-Induced Enhancement of Mouse Amygdalar Synaptic Plasticity Depends on Glucocorticoid and ß-Adrenergic Activity. PLoS ONE, 7(8), e42143. doi:10.1371/journal.pone.0042143Moreno-Smith, M., Lutgendorf, S. K., & Sood, A. K. (2010). Impact of stress on cancer metastasis. Future Oncology, 6(12), 1863-1881. doi:10.2217/fon.10.142Tissing, W. J. E., Meijerink, J. P. P., den Boer, M. L., & Pieters, R. (2003). Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia, 17(1), 17-25. doi:10.1038/sj.leu.2402733Anderer, G., Schrappe, M., Brechlin, A. M., Lauten, M., Muti, P., Welte, K., & Stanulla, M. (2000). Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics, 10(8), 715-726. doi:10.1097/00008571-200011000-00006Thaker, P. H., & Sood, A. K. (2008). Neuroendocrine influences on cancer biology. Seminars in Cancer Biology, 18(3), 164-170. doi:10.1016/j.semcancer.2007.12.005Takeda, T., Kurachi, H., Yamamoto, T., Nishio, Y., Nakatsuji, Y., Morishige, K., … Murata, Y. (1998). Crosstalk between the interleukin-6 (IL-6)-JAK-STAT and the glucocorticoid-nuclear receptor pathway: synergistic activation of IL-6 response element by IL-6 and glucocorticoid. Journal of Endocrinology, 159(2), 323-330. doi:10.1677/joe.0.1590323Rodriguez-Rocha, H., Garcia Garcia, A., Zavala-Flores, L., Li, S., Madayiputhiya, N., & Franco, R. (2012). Glutaredoxin 1 Protects Dopaminergic Cells by Increased Protein Glutathionylation in Experimental Parkinson’s Disease. Antioxidants & Redox Signaling, 17(12), 1676-1693. doi:10.1089/ars.2011.4474Tome, M. E., Jaramillo, M. C., & Briehl, M. M. (2011). Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lymphoma cells. Free Radical Biology and Medicine, 51(11), 2048-2059. doi:10.1016/j.freeradbiomed.2011.09.002Lázár-Molnár, E., Hegyesi, H., Tóth, S., & Falus, A. (2000). AUTOCRINE AND PARACRINE REGULATION BY CYTOKINES AND GROWTH FACTORS IN MELANOMA. Cytokine, 12(6), 547-554. doi:10.1006/cyto.1999.0614Sansone, P., & Bromberg, J. (2012). Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies. Journal of Clinical Oncology, 30(9), 1005-1014. doi:10.1200/jco.2010.31.8907Arrigo, A.-P. (1999). Gene expression and the thiol redox state. Free Radical Biology and Medicine, 27(9-10), 936-944. doi:10.1016/s0891-5849(99)00175-6Antelmann, H., & Helmann, J. D. (2011). Thiol-Based Redox Switches and Gene Regulation. Antioxidants & Redox Signaling, 14(6), 1049-1063. doi:10.1089/ars.2010.3400Leibowitz, B., & Yu, J. (2010). Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biology & Therapy, 9(6), 417-422. doi:10.4161/cbt.9.6.11392Powe, D. G., Voss, M. J., Habashy, H. O., Zänker, K. S., Green, A. R., Ellis, I. O., & Entschladen, F. (2011). Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Research and Treatment, 130(2), 457-463. doi:10.1007/s10549-011-1371-zPowe, D. G., & Entschladen, F. (2011). Using β-blockers to inhibit breast cancer progression. Nature Reviews Clinical Oncology, 8(9), 511-512. doi:10.1038/nrclinonc.2011.12

    Pilot Study on the Efficiency of the Biostimulation with Autologous Plasma Rich in Platelet Growth Factors in Otorhinolaryngology: Otologic Surgery (Tympanoplasty Type I)

    Get PDF
    When otologic procedures that involve tympanic membrane repairs are performed, biomaterials or biological tissues as normal as grafts are used. At the moment, biological material from the own patient is used with varying success rates. The procedure used and the patient's tissue repair capabilities tend to determine the outcome. We present a preliminary study on tympanic membrane perforation repairs using an autograft obtained by manipulating platelet degranulation and the coagulation cascade and reinforced with a seal using platelet growth factors. We present three cases in which we used this procedure. The results will be valued based on the tympanic perforation closure index. With this study, we want to assess the effectiveness of tympanic perforation repairs with this technically simple method. If this method was objectively proved to be effective, it would lead to lower patient morbidity and sanitary costs

    Modelling the Inorganic Bromine Partitioning in the Tropical Tropopause over the Pacific Ocean

    Get PDF
    The stratospheric inorganic bromine burden (Bry) arising from the degradation of brominated very short-lived organic substances (VSL org ), and its partitioning between reactive and reservoir species, is needed for a comprehensive assessment of the ozone depletion potential of brominated trace gases. Here we present modelled inorganic bromine abundances over the Pacific tropical tropopause based on aircraft observations of VSL org of two campaigns of the Airborne Tropical TRopopause EXperiment (ATTREX 2013 carried out over eastern Pacific and ATTREX 2014 carried out over the western Pacific) and chemistry-climate simulations (along ATTREX flight tracks) using the specific meteorology prevailing. Using the Community Atmosphere Model with Chemistry (CAM-Chem), we model that BrO and Br are the daytime dominant species. Integrated across all ATTREX flights BrO represents ~ 43 % and 48 % of daytime Bry abundance at 17 km over the Western and Eastern Pacific, respectively. The results also show zones where Br/BrO >1 depending on the solar zenith angle (SZA), ozone concentration and temperature. On the other hand, BrCl and BrONO 2 were found to be the dominant night-time species with ~ 61% and 56 % of abundance at 17 km over the Western and Eastern Pacific, respectively. The western-to-eastern differences in the partitioning of inorganic bromine are explained by different abundances of ozone (O3), nitrogen dioxide (NO2) , and total inorganic chlorine (Cly).Fil: Navarro, María A.. University of Miami; Estados UnidosFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional. Facultad Regional Mendoza. Secretaría de Ciencia, Tecnología y Postgrado; ArgentinaFil: Atlas, Elliot. University of Miami; Estados UnidosFil: Rodriguez Lloeveras, Xavier. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Kinnison, Douglas E.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Lamarque, Jean Francois. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Tilmes, Simone. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Thornberry, Troy. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Rollins, Andrew. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Elkins, James W.. Earth System Research Laboratory; Estados UnidosFil: Hintsa, Eric J.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Moore, Fred L.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados Unido

    DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific

    Get PDF
    Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situation is found for MAT2A. Additionally, histones associated to MAT1A and MAT2A genes showed enhanced levels of acetylation in expressing tissues (two-fold for MAT1A and 3.5-fold for MAT2A liver and kidney respectively). These observations support a role for chromatin structure and its modification in the tissue-specific expression of both MAT genes

    Secondary Prevention of Cancer in the Older Individual

    Get PDF
    The incidence and the mortality of cancer increase with age. This article explores the possibility of decreasing cancerrelated mortality in the aged with secondary prevention of cancer deaths that entails early diagnosis of cancer through the screening of asymptomatic older individuals. We establish that screening of asymptomatic individuals should be based on physiologic rather than chronologic age that may be estimated from a comprehensive geriatric assessment and possibly with the utilization of biologic markers of aging. It is reasonable to offer some form of screening for lung and colorectal cancer to individuals with a life expectancy of at least five years and screening for breast and prostate cancer to women and men respectively with a life expectancy of at least ten years. The ideal number of screening sessions and the ideal interval between screening sessions is unestablished. The aging of the population, the diversity of the older population, the development of new and more sensitive screening interventions, the discovery of new biologic markers of cancer and age represent the main challenges in studying the value of cancer screening in the aged. Probably the most reliable information may be obtained from rapid-learning databases in which information related to each person's physiologic age is included. Worldwide, the incidence and prevalence of cancer increase with age [1]. In the meantime the risk of cancer-related mortality increases with age at diagnosis [2-4]. As the world population is aging, cancer in the older person is an ever more common problem, and the reduction of cancer deaths in older individuals represents the most urgent goal of cancer control. In this article we explore secondary cancer prevention as representing a strategy to reduce the risk of mortality in the aged.This hypothesis is based on four considerations: i. Several studies showed that the practice of screening asymptomatic individuals for cancer becomes less common with the aging of the population [5]. ii. The average life expectancy of the Western population is rapidly increasing1. Consequently the benefits of early detection of cancer that emerges several years after diagnosis may be present even for those undergoing screening at an advanced age. iii. New forms of cancer treatment, including minimally invasive surgery [6], stereotactic radio surgery [7], and targeted systemic therapy [8], are associated with decreased risk of complications. They may be safely utilized in individuals with limited tolerance of stress who might be hurt by more aggressive treatments. It is now possible to personalize cancer screening according to individual life expectancy and tolerance of stress, as the estimate of a person's physiologic age is becoming more precise [1,9]. After reviewing the principles and the effectiveness of cancer screening and early detection, this article will explore the benefits and risks of secondary cancer prevention in older individuals. In particular we will review the current evidence and the limitations of previous clinical trials. At the end we will propose a conceptual framework to guide the screening of older individuals for cancer, and we will propose a research agenda

    Quality of nursing care questionnaire (CUCACE): validity and reliability in Colombia

    Get PDF
    Objetive To determine the validity and reliability of the CUCACE (Quality of Nursing Care Questionnaire) in Colombia. Every day there is a growing interest in measuring the quality of care received from nursing personnel as a tangible element of care; however, not having reliable and valid instruments is an obstacle, especially in Colombia. Method A psychometric and evaluative instrumental study was conducted. Data of interest from CUCACE filled out in Spanish were extracted together with demographic information of the participants. Results Confirmed the validity of the content and construct validity of the scales of care, attention to nursing care and the perception of care in a Colombian hospital. Cronbach’s alpha was higher than 0.7, and its reliability is accepted in the context. Conclusion The CUCACE is adequate to measure the satisfaction and experience of patients with nursing care in the Colombian context. The questionnaire with its two scales is useful, clear, precise, valid and reliable to evaluate the quality of nursing car
    corecore